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a b s t r a c t

A bifurcation analysis is performed on a nonlinear railway vehicle having dual-bogies to

examine the coupling effect of the bogies on the vehicle’s hunting behavior. Because of

the coupled nature of these bogies, a pair of complex conjugate roots exists in the

linearized system close to the origin in addition to the most dominant pair of roots at

in a novel way, the original systems of equations are converted into new equations

whose linear portions exhibit monofrequency oscillations. The solutions near the

hunting speed are constructed with an asymptotic expansion of a small perturbation

parameter using the method of multiple scales.

Steady state solutions are sought near the hunting speed and the corresponding

limit cycle behavior is investigated. The stability of these limit cycles is characterized

using Lyapunov’s indirect method for the steady state solutions, which is also a novel

approach. To support the stability results validity, a series of numerical simulations are

performed. Bifurcation diagrams for the lateral motion of the vehicle system are then

obtained, and the effects of nonlinearity on the vehicle’s hunting behavior are

thoroughly examined.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the past few decades, the hunting characteristics above the critical speed of a railway vehicle system have been
regarded as one of the most important issues concerning the stability of the system. However, previous studies have been
mainly focused on simple systems composed of wheelsets and bogie frames, and the methodologies used to analyze the
system stability and the associated dynamic behavior are mostly based on rough indirect methods and numerical
simulations of the linearized alternatives of the nonlinear systems [1–6].

The railway vehicle system generally includes various nonlinearities such as the flange contact, dry friction, nonlinear
dynamic elements, and nonlinear creeps (with their saturation effect) that occur at the contacting interfaces between the
rail and the wheels. Even though these nonlinear factors complicate the underlying problem, they are significant and
should be considered when analyzing the system stability.

In the special case where a vehicle runs on a straight rail without a distinctively large disturbance, the stability analysis
using Lyapunov’s indirect method may yield a correct measure of the system stability. However, when perturbations on the
vehicle states are large compared to the equilibrium states, the stability results significantly deviate from those obtained
using Lyapunov’s indirect method [7]. For a nonlinear dynamic system, such as a railway vehicle, it is known that the
system parameters or initial conditions could generate multiple solutions. This phenomenon is known as ‘bifurcation’ [8].
ll rights reserved.

+82 2 3280 9982.

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2010.03.024
mailto:seokj@cau.ac.kr


ARTICLE IN PRESS

Nomenclature

a half of the track gauge
aq amplitude of xq

Akq (k,q)th component of Jacobian matrix evalu-
ated at the equilibrium point

bc1, bc3 half of the secondary longitudinal and vertical
spring arms

bc2, bc4 half of the secondary longitudinal and vertical
damper arms

bt1, bt3 half of the primary longitudinal and vertical
spring arms

bt2, bt4 half of the primary longitudinal and vertical
damper arms

CðnÞp arbitrary constants to be determined for xðnÞp

Cpx, Cpy, Cpz primary longitudinal, lateral, and vertical
damping coefficients, respectively

Csx, Csy, Csz secondary longitudinal, lateral, and vertical
damping coefficients, respectively

f11, f12, f22, f33 lateral, lateral/spin, spin, and long-
itudinal creep coefficients, respectively

fk nonlinear forcing terms that include the flange
contact and the heuristic creep forces

FLxij, FLyij, FLzij linear creep force of the left wheel in the
longitudinal, lateral, and vertical direction,
respectively

F�Lxij, F�Lyij linear creep force of the left wheel in the
longitudinal and lateral direction given by the
Kalker’s linear theory

FðnÞp nth order function of the pth forcing term
FRxij, FRyij, FRzij linear creep force of the right wheel in

the longitudinal, lateral, and vertical direction,
respectively

F�Rxij, F�Ryij linear creep force of the right wheel in the
longitudinal and lateral direction given by the
Kalker’s linear theory

Fsyc, Fsyti, Fsywij suspension forces of the carbody, bogies,
and wheelsets, respectively, in the lateral
direction

Fszc, Fszti, Fszwij suspension forces of the carbody, bogies,
and wheelsets, respectively, in the vertical
direction

Ftij flange contact force
g gravitational acceleration
h height of the vehicle body mass center above

the wheelset mass center
h0 height of the secondary suspension above the

bogie frame mass center
hG height of the bogie mass center above the

wheelset mass center
Icx, Icy, Icz roll, pitch, and yaw moments of inertia of the

vehicle body, respectively
Itx, Ity, Itz roll, pitch, and yaw moments of inertia of the

bogie frame, respectively
Iwx, Iwy, Iwz roll, pitch, and yaw moments of inertia of

the wheelset, respectively
Kpx, Kpy, Kpz primary longitudinal, lateral, and vertical

stiffnesses, respectively
Kry, Krz vertical and lateral rail stiffnesses

Ksx, Ksy, Ksz secondary longitudinal, lateral, and vertical
stiffnesses, respectively

Lc distance between the vehicle body and the
bogie frame mass centers

Lt1, Lt2 half of the primary lateral spring and damper
arms

mc, mt, mw vehicle body, bogie frame, and wheelset
masses, respectively

MLxij, MLzij linear creep moment of the left wheel in the
longitudinal and vertical direction

M�Lzij linear creep moment of the left wheel in the
vertical direction given by the Kalker’s linear
theory

MRxij, MRzij linear creep moment of the right wheel in
the longitudinal and vertical direction

M�Rzij linear creep moment of the right wheel in the
vertical direction given by the Kalker’s linear
theory

Msxc, Msxti, Msxwij suspension moments of the carbody,
bogies, and wheelsets, respectively, in the
longitudinal direction

Msyc, Msyti, Msywij suspension moments of the carbody,
bogies, and wheelsets, respectively, in the
lateral direction

Mszc, Mszti, Mszwij suspension moments of the carbody,
bogies, and wheelsets, respectively, in the
vertical direction

NLyij, NLzijnormal forces on the left wheel in the lateral
and vertical directions

NRyij, NRzij normal forces on the right wheel in the
lateral and vertical directions

r0 nominal wheelset rolling radius
rL, rR left- and right-wheel rolling radii
RLxij, RLyij, RLzij x, y, z components of the contact position

vector on the left wheel, respectively
RRxij, RRyij, RRzij x, y, z components of the contact position

vector on the right wheel, respectively
Ry radius of the curved track
Tn time scale of the nth order
V forward speed of the vehicle
xk kth state variable
yc, zc, cc, fc, gc lateral, vertical displacements, and yaw,

roll, pitch angles of the carbody, respectively
yti, zti, cti, fti, gti lateral, vertical displacements, and

yaw, roll, pitch angles of the bogies, respec-
tively

ywij, zwij, cwij, fwij lateral, vertical displacements, and
yaw, roll angles of the wheelsets, respectively

Greek symbols

aij saturation constant of heuristic creep model
bij nonlinearity of heuristic creep model
bLij nonlinearity of heuristic creep model of the

left wheel
bRij nonlinearity of heuristic creep model of the

right wheel
d flange clearance
dij Kronecker delta function
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dL, dR contact angle of the left and right wheels
e a small perturbation parameter
e� a small negative real number
zðmÞp mth complex Fourier coefficient of Fð2Þp

Zð1Þp 1st complex Fourier coefficients of Fð3Þp

yq phase angle of xq

ŷ a phase difference (=y1�y2)
fse cant angle of rail
FðmÞp mth complex Fourier coefficient of Fð1Þp

jðqÞk kth component of qth eigenvector
wðjÞk kth component of the adjoint eigenvector associated

with eigenvalue lj

k a scaling parameter
k* complex conjugate of k
l wheel conicity
li ith eigenvalue

lkp 0,0,iok,� iok� for p=1,2,3,4
m coefficient of friction
xq qth modal coordinate
xðnÞp nth order periodic function of different time

scales T0,T1,T3,y, on the pth modal coordinate
o Hopf bifurcation frequency (rad/s)
o0 an angular frequency very close to the Hopf

bifurcation frequency (rad/s)

Subscripts

i location of bogies: i=1 (front bogie), i=2 (rear
bogie)

j location of wheelsets: j=1 (leading wheelset),
j=2 (trailing wheelset)
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In a study performed by Huilgol [9], the Hopf bifurcation of a wheelset system incorporating nonlinear
wheel/rail contact forces was analyzed. To overcome the limitations of linear approximation methods in stability
analysis, Moelle et al. [10] and Gasch et al. [11] performed bifurcation analyses for nonlinear single-bogie vehicle
systems.

To describe the bifurcation characteristics of a dual-bogie vehicle system, True et al. [12–15] took into account the
nonlinear creep forces and their saturation effects. The results show the existence of subcritical Hopf bifurcation that
bifurcates from the hunting speed and the possible existence of multiple critical speeds in nonlinear systems. To describe
the periodic, quasiperiodic, and chaotic motions of a simplified wheelset model under the nonlinear friction laws of rolling,
Knudsen et al. [16] used the Poincare section and map. Ahmadian and Yang [17,18] performed a bifurcation analysis on a
nonlinear system having wheelset and bogie systems with nonlinear yaw damping and flange contact. Their analysis is a
mathematical improvement from the earlier work of True et al. [12–15].

The studies cited above were mostly confined to the small degrees of freedom (DOF) of the target systems, which simply
included the wheelset and the bogie frame. Therefore, to more accurately account for the coupling effects between various
components, a full vehicle model is required. Chung et al. [19] performed a bifurcation analysis on a full vehicle model,
albeit with a limited 17 DOF, by treating the nonlinear relationships as a two-point boundary value problem. To support
the validity of their results regarding the critical speed of a nonlinear vehicle system, Chung et al. [20] compared the
bifurcation modeling results with experimental data attained using a full-scale roller rig. Zeng et al. [21] also performed a
bifurcation analysis on a 17 DOF vehicle system that included a coupler traction force. They used a Poincare map to obtain
the limit cycle behavior and compared the bifurcation results for straight and curved tracks. The full vehicle bifurcation
diagrams of Refs. [19–21] still exhibit single branches similar to those of single-bogie vehicle systems, and the bifurcation
characteristics due to the coupling between the two bogies could not be explained.

In a set of differential equations used to describe a vehicle’s dynamic behavior, when the contribution of nonlinear
terms is small compared to the contribution of linear terms, a variety of perturbation methods are known to be effective at
solving the dynamic problem with sufficient accuracy [22]. Among these techniques, the method of asymptotic expansion
proposed by Bogoliubov et al. [23] may provide the most adequate approach to solve oscillating, multi-degree of freedom,
weakly nonlinear systems in the presence of internal friction. In such circumstances, the system appears to undergo near-
monofrequency oscillations because high-frequency oscillating components tend to be damped out rapidly. Ahmadian and
Yang [17,18] employed this method to calculate the limit cycles of a nonlinear vehicle system through an expansion of the
running speed in the vicinity of the hunting speed, and added the first-order solution to the linear terms. While an
improvement of the linear solution, this approach will still provide less accurate results for a system with higher order
nonlinearities. Additionally, the proposed method is limited to monofrequency oscillations, and thus not adequate for a
system with multiple critical eigenvalues.

The railway vehicle generally includes dual-bogies having identical dynamic characteristics. It is known that such a
system has mode interaction due to the existence of several pairs of eigenvalues, which are very close in values [24].
Through the inspection of the root locus diagram, it can be easily observed that several root loci entail their shadowed
ones. For the railway vehicle under consideration, these eigenvalues are caused by the coupling effects of the two identical
bogie systems that are weakly connected to the vehicle body. Additionally, the most dominant roots entail their shadowed
ones. Thus, an improved approach considering multiple critical eigenvalues is needed to investigate the hunting motion of
a dual-bogie railway vehicle system.

In this study, the target system is a 31-DOF full railway vehicle model with its flange contact and heuristic creeps. The
resulting system equations for the dual-bogie railway vehicle yield two sets of principal conjugate roots, one
corresponding to the most dominant principal eigenmodes and the other associated with its shadowed eigenmodes.
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Because the resulting multifrequency oscillations hinder the application of the asymptotic approximation procedure, a
scaling parameter is introduced. This parameter and the biorthogonality relationships allows us to model the
multifrequency (but close to monofrequency) oscillating system like one that has monofrequency oscillations. Using
the method of multiple scales, the asymptotic approximations of the modal coordinates are obtained as functions of the
amplitudes and phase angles that can be represented by mutually coupled first order differential equations (i.e.
modulation equations).

To investigate the bifurcation characteristics of the vehicle system under consideration, the limit cycles are obtained,
and the stability of the resulting limit cycles is examined. It is worth nothing that the stability of the vehicle system
considered in this study is not a sole function of an amplitude as treated in Refs. [17,18] but a function of two amplitudes
and their phase difference. Accordingly, Lyapunov’s indirect method is applied to the modulation equations in order to
determine the stability of the limit cycle. Also, it should be noted that the use of Lyapunov’s indirect method to determine
stability is completely different from the conventional use of this method to determine the hunting speed by directly
applying the eigenanalysis to the linearized system [1–6].

To verify the effectiveness of the proposed asymptotic approximation procedure, first, second, and third approximations
are computed semi-analytically using the symbolic language MapleTM [25]. Results are then compared to those obtained
by direct numerical integration. The bifurcation analysis for the system with linear creep is performed separately from the
system with heuristic creep, and their results compared and discussed.

2. Equations of motion for the 31-DOF vehicle system

Fig. 1 is a schematic of the railway vehicle system, where stiffness and damping elements have been incorporated into
the suspensions. As shown in Fig. 1, the model system includes a vehicle body, front and rear bogies positioned with mirror
symmetry relative to a midplane, and two identical wheelsets for each bogie frame. All possible motions (lateral, vertical,
yawing, rolling, and pitching) of the system components (vehicle body, bogie frames, and wheelsets) are coupled through
the primary and secondary suspensions. It should be noted that there is no pitching motion of wheelset. The result is a
system with a total of 31 DOF (5 DOF for the vehicle body, 5 DOF for each of the two bogies, and 4 DOF for each of the four
wheelsets).

The dynamic behavior and stability are partially governed by the contact mechanisms between the wheel and rail
surfaces, whose schematics are shown in Fig. 2(a). These contacts can generally be classified into two categories, the
primary contacts which occur at the interfacial surface and induce non-conservative creep forces in the elliptical contact
region, and the secondary contacts which impact the rail side when the clearance between the wheel flange and the rail
becomes zero. In this study, a heuristic creep theory is employed to account for the nonlinear creep phenomenon that
occurs due to the saturation effect of the adhesion limit. It is assumed that the wheel is conical and the rail knife-edged in
shape with known lateral and vertical stiffnesses [26], as shown in Fig. 2(b). Based on this wheel-rail configuration, the
flange contact force can be considered to be a spring reaction force restricted by a dead-band.

The equations of motion for the vehicle system can be derived [6], with the appropriate linear and angular
displacements, based on the Cartesian coordinate systems shown in Fig. 1. Using some linearization and simplification
procedures, the equations of motion for the vehicle body and the bogie frames in the lateral, vertical, yaw, roll, and pitch
Fig. 1. A schematic of the vehicle system.
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Fig. 2. (a) A schematic of the wheel–rail contact mechanism and (b) its dynamic model.
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directions are obtained, respectively, in the form

mq €yq�
V2

Ry

� �
¼�mqgfseþFsyq,ðq¼ c,t1,t2Þ, (1a)

mq €zqþ
V2fse

Ry

� �
¼�mqgþFszq,ðq¼ c,t1,t2Þ, (1b)

Iqz
€cq ¼Mszq,ðq¼ c,t1,t2Þ, (1c)

Iqx
€fq ¼Msxq,ðq¼ c,t1,t2Þ, (1d)

Iqy €gq ¼Msyq,ðq¼ c,t1,t2Þ, (1e)

where c, t1, and t2 for the subscript q represent the vehicle body, the front bogie frame, and the rear bogie frame,
respectively. Fsyq, Fszq, Msxq, Msyq, Mszq represent the suspension forces in the lateral and vertical directions and the
suspension moments in the roll, pitch, and yaw directions, respectively. To avoid a lengthy description, the details of these
suspension forces/moments are given in Appendix A and the associated physical parameters are defined in the
nomenclature.

Similarly, the equations of motion for the wheelsets in the lateral, vertical, yaw, and roll directions are, respectively,
given by

mw €ywij�
V2

Ry

� �
¼�mwgfseþðaijFLyijþaijFRyijÞþNLyijþNRyijþFsywij�Ftij, (2a)

mw €zwijþ
V2fse

Ry

� �
¼�mwgþðFLzijþFRzijÞþNRzijþNLzijþFszwij, (2b)
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Iwz
€cwijþ

IwyV _fwij

r0
¼ RRxijaijFRyij�RRyijaijFRxijþRLxijaijFLyij�RLyijaijFLxijþRRxijNRyijþRLxijNLyijþaijMLzijþaijMRzijþMszwij,

(2c)

Iwx
€fwijþ

IwyV V
Ry
� _cwij

� �
r0

¼ RRyijFRzij�RRzijaijFRyijþRLyijFLzij�RLzijaijFLyijþRLyijNLzijþRRyijNRzij�RRzijNRyij�RLzijNLyijþMLxijþMRxijþMsxwij,

(2d)

where the subscripts i (i=1 for the front bogie, 2 for the rear bogie) and j (j=1 for the leading wheelset, 2 for the trailing
wheelset) represent the location of the wheelset in the vehicle system, the subscripts L and R denote the left- and right-
hand sides, respectively. Here, Ftij is the flange contact force, and Fsywij, Fszwij, Msxwij, and Mszwij denote the suspension forces
in lateral and vertical directions and the suspension moments in the roll and yaw directions, respectively. Also, FLxij, FLyij,
FLzij, FRxij, FRyij, FRzij, MLxij, MLzij, MRxij, and MRzij are the linear creep forces and moments given by the Kalker’s linear theory
[27]. It should be noted that the saturation constants aij are multiplied by these linear creep forces to account for a
heuristic creep phenomenon. The details of all the reaction forces/moments and the associated physical quantities are
given in Appendix A and the nomenclature.

3. Development of nonlinear system equations for asymptotic expansions

As shown in the previous section, the dynamic equations of motion are inherently nonlinear, which prevents us from
directly applying a variety of commonly used linear theories. To investigate the hunting behavior of the model system, we
first derive the asymptotic solutions of a full railway vehicle system having a total of 31 DOF.

The equations of motion represented in Eqs. (1a)–(1e) and (2a)–(2d) can be expressed in the following index form

dxk

dt
¼ Fkðx1, . . . ,x62Þ,k¼ 1, . . . ,62, (3)

where xk denote the state variables composed of the displacements and velocities of the system components. Expressing
the states of the vehicle system by the sum of the constant equilibrium states, xk, and the additional perturbation terms, ~xk,
and expanding the right-hand side of Eq. (3) in a Taylor series at the equilibrium point, Eq. (3) can be transformed into

d ~xk

dt
�
X62

q ¼ 1

Akq ~xq ¼ fkð ~x1, . . . , ~x62Þ,k¼ 1, . . . ,62, (4)

where Akq are the components of the Jacobian matrix evaluated at the equilibrium point. Note that the functions fk in
Eq. (4) are nonlinear forcing terms that include the flange contact and the heuristic creep forces at the wheel/rail contact
interfaces.

The perturbed state variables can be expressed by linear combinations of the weighted eigenvectors in the form

~xk ¼
X62

q ¼ 1

xqj
ðqÞ
k ,k¼ 1, . . . ,62, (5)

where the xq and jðqÞk terms are the qth modal coordinate and the kth component of the associated eigenvector,
respectively.

As previously mentioned, due to the coupling effect of the two identical bogies through the vehicle body, the hunting
motion of the full vehicle system is mainly governed by the two most dominant conjugate principal eigenvectors and the
two associated shadowed ones. This coupling effect is primarily due to two factors, namely the vehicle body high degree of
inertia compared to the other elements, and the smallness of the stiffnesses of the secondary suspension compared to
those of the primary suspension. Therefore, the two identical bogie systems can be lightly coupled through the vehicle
body, and the two pairs of principal roots tend to be located very closely to each other in the complex pole plane. Hence,
four principal eigenvectors can be found near the hunting speed. It should be noted that, because of the existence of these
shadow principal roots for the dominant principal roots, the limit cycles at the hunting speed do not exhibit
monofrequency oscillations which typically appear in the analyses for a single wheelset and single-bogie railway vehicle
models [17,18].

In order to represent the perturbed state variables in the vicinity of the hunting speed, we use the four principal
eigenvectors under the following assumptions: the system is vibrating with a monofrequency (close to Hopf bifurcation
frequency) but with a slowly varying amplitude and phase, and the effects of the other remnant modes are small enough to
be neglected. Therefore, the perturbed state variables shown in Eq. (5) can be expressed in the following reduced form:

~xk ¼
X4

p ¼ 1

xpj
ðpÞ
k ,k¼ 1, . . . ,62: (6)

Since the damping of the system under consideration is assumed to be of the viscous type, the autonomous set of state
equations is non-self-adjoint [28]. It should be noted that the orthogonal relationships between the eigenvectors are no
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more valid in the non-self-adjoint system. In such a system, the solution procedure can be obtained by using the
biorthogonality relationships of the eigenvectors of the original system with those of its adjoint system. The biorthogonal
relationships are given by [28] X

k

wðjÞk j
ðiÞ
k ¼ dij,i,j¼ 1,2, . . . ,62, (7)

X
k,l

wðjÞk Aklj
ðiÞ
l ¼ lidij,i,j¼ 1,2, . . . ,62, (8)

where li is the ith eigenvalue, dij is the Kronecker delta function, and wðjÞk is the kth component of the adjoint eigenvector
associated with eigenvalue lj.

Substituting Eq. (6) into (4) and introducing the biorthogonal relationships, the differential equations of the modal
coordinates are derived in the following reduced form:

dxp

dt
�lpxp ¼ f 0p,p¼ 1, . . . ,4, (9)

where

lp ¼ 7 io for p¼ 1,2, lp ¼ e�7 io0 for p¼ 3,4, (10)

f 0p ¼
X62

k ¼ 1

wðpÞk fkðx1, . . . ,x62; x1, . . . ,x4Þ, (11)

where i¼
ffiffiffiffiffiffiffi
�1
p

, lp is the pth principal eigenvalue, and wðpÞk is the kth component of the associated adjoint eigenvector. Note
that o in Eq. (10) is the Hopf bifurcation frequency of the homogeneous part of Eq. (4).

In addition, e�7 io0 are the shadowed principal eigenvalues, where e� is a negative real number that is small compared
to its imaginary counterpart, o0, which is assumed to be very close to o in this study. As indicated in Eq. (10), the full
vehicle system under consideration can be described by the two most dominant conjugate principal eigenvalues along
with the two conjugate shadowed ones. Consequently, the system has two dominant oscillating frequencies, o and o0,
with a small difference existing between them.

The asymptotic solutions of a nonlinear equation, such as Eq. (9), can be obtained through a variety of perturbation
methods [22]. The asymptotic approximation appropriately models the original nonlinear system exhibiting oscillations.
The asymptotic solutions are represented as sums of the periodic functions expanded into a power series of a small
perturbation parameter (e). By applying these asymptotic solutions to Eq. (9), the differential equation for each order of the
perturbation parameter can be obtained. To satisfy the solvability conditions from which the relevant modulation
equations are derived, the secular terms that are included in the forcing terms must be removed. Consequently, the
asymptotic solutions of Eq. (9) can be represented as periodic functions with the arguments governed by the corresponding
modulation equations.

The forcing terms fk in Eq. (11) include complicated nonlinear functions that take account of the heuristic creep and
flange contact behaviors, making it almost impossible to represent the solvability conditions in closed form. One of the
methods that can be applied to circumvent such a difficulty is to expand the forcing terms into Fourier series.
Unfortunately, since Eq. (9) is composed of two pairs of mutually conjugate differential equations (lp=7 io for p=1, 2 and
e�7 io0 for p=3, 4) and is not in the form of a monofrequency oscillation, Fourier coefficients of forcing terms of these
equations cannot be derived without modification. However, in the current case the two dominant oscillating frequencies
are very close. Hence, the problem at hand can be resolved if a scaling parameter k is introduced, thus allowing us to
express the homogeneous parts of the second pair of Eq. (9) (i.e., for p=3, 4) as identical to the homogeneous parts of the
first pair (i.e., for p=1, 2). Eq. (9) can then be reformulated in the form:

dxp

dt
�l0pxp ¼ eFp,for p¼ 1, . . . ,4, (12)

where

l0p ¼ 7 iofor p¼ 1,2 or p¼ 3,4, (13)

Fp ¼ f 0pþl
k
pxp (14)

and e is a small dimensionless parameter that indicates the weakness of the nonlinear terms when compared to the linear
term (l0pxp). In Eq. (14), lk

p for p=1,2,3,4 are, respectively, 0,0,io,k,� iok*. Also, k=l3/l1�1 and k* is the complex conjugate
of k.

Generally, when perturbation is absent, i.e. e=0 in Eq. (12), the oscillations will be purely harmonic with a uniform
amplitude and phase. On the other hand, the existence of nonlinear perturbations, i.e. ea0, inevitably results in the
additional appearance of overtones in the solutions of Eq. (12). These overtones indicate the dependence between
instantaneous frequencies and amplitudes, and they also include information on the increasing or decreasing
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characteristics of the oscillation amplitudes, which depend on whether energy is expelled or absorbed by the perturbing
forces [23].

4. Asymptotic solutions for the system equations using the method of multiple scales

For asymptotic expansion with small perturbations, use of the derivative expansion method (called the many-variable
version of the method of multiple scales [22]) allows us to introduce different time scales, Tn, and time derivatives, d/dt,
defined by

Tn ¼ ent, (15)

d

dt
¼D0þeD1þe2D2þ . . . , Dn ¼

q
qTn

: (16)

This method also allows for asymptotic expansions of the modal coordinates in the power of e

xp ¼ xð0Þp ðT0,T1, . . .Þþexð1Þp ðT0,T1, . . .Þþe2xð2Þp ðT0,T1, . . .Þþ � � � , (17)

where xðnÞp ðp¼ 1,2,3,4Þ is the nth order periodic function of different time scales T0,T1,T3,y, on the pth modal coordinate.
By substituting Eqs. (16) and (17) into Eq. (12), expanding the right-hand side of Eq. (12) with the lowest periodic function
of xp (i.e. xð0Þp ), and collecting like powers of e, one obtains differential equations with successive orders of e in the form

e0 : D0x
ð0Þ
p �l

0

px
ð0Þ
p ¼ 0, (18a)

e1 : D0x
ð1Þ
p �l

0

px
ð1Þ
p ¼ Fð1Þp �D1x

ð0Þ
p , (18b)

e2 : D0x
ð2Þ
p �l

0

px
ð2Þ
p ¼ Fð2Þp �D1x

ð1Þ
p �D2x

ð0Þ
p , (18c)

e3 : D0x
ð3Þ
p �l

0

px
ð3Þ
p ¼ Fð3Þp �D1x

ð2Þ
p �D2x

ð1Þ
p �D3x

ð0Þ
p , (18d)

^

where FðnÞp is the nth order function of the pth forcing term such that

Fð1Þp ¼ Fpðx
ð0Þ
1 , . . . ,xð0Þ4 Þ, (19a)

Fð2Þp ¼
X4

r ¼ 1

qFp

qxr
ðxð0Þ1 , . . . ,xð0Þ4 Þx

ð1Þ
r , (19b)

Fð3Þp ¼
X4

r ¼ 1

qFp

qxr
ðxð0Þ1 , . . . ,xð0Þ4 Þx

ð2Þ
r þ

1

2

X4

r ¼ 1

X4

s ¼ 1

q2Fp

qxrqxs
ðxð0Þ1 , . . . ,xð0Þ4 Þx

ð1Þ
r xð1Þs : (19c)

The solutions for the unperturbed modal coordinate systems, which are the solutions of Eq. (18a), are composed of two
pairs of complex conjugates and can be defined by

xð0Þp ¼ ApeibðoT0Þ (20)

where

b¼
þ1 for p¼ 1,3,

�1 for p¼ 2,4,

(
(21a)

Ap ¼

1

2
a1eiby1 for p¼ 1,2,

1

2
a2eiby2 for p¼ 3,4,

8>><
>>: (21b)

and the amplitudes a1, a2, and phase angles y1, y2 of xp are functions of T1, T2,y .
Substituting Eq. (20) into (18b) and using the complex Fourier series expansions of the forcing terms, Fð1Þp , we obtain

D0x
ð1Þ
p �l

0

px
ð1Þ
p ¼

X1
m ¼ �1

FðmÞp eimoT0�D1ðApeibðoT0ÞÞ, (22)

where FðmÞp is the mth complex Fourier coefficient of Fð1Þp calculated by

FðmÞp ¼
1

2p

Z 2p

0
Fð1Þp ðx

ð0Þ
1 , . . . ,xð0Þ4 Þe

�imoT0 dðoT0Þ: (23)
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To determine the dependence on slow scales, one may investigate the higher-order problem and impose conditions that
make the expansion uniform. For simple nonlinear vibration problems, the above process leads us to discard secular and
small-divisor terms [22]. In order for xð1Þp =xð0Þp to be bounded for all T0, the secular term(s) on the right-hand side of Eq. (22)
must be eliminated, which results in

FðbÞp �D1ðApeibðoT0ÞÞ ¼ 0: (24)

After removing the secular term, the resulting form of Eq. (22) and its solutions take on the following form

D0x
ð1Þ
p �l

0

px
ð1Þ
p ¼

X1
m ¼ �1,mab

FðmÞp eimoT0 , (25)

xð1Þp ¼
X1

m ¼ �1,mab

FðmÞp

ioðm�bÞ
eimoT0þCð1Þp eiboT0 , (26)

where Cð1Þp are arbitrary constants to be determined.
The substitution of Eqs. (20) and (26) into Eq. (18c) yields

D0x
ð2Þ
p �l

0

px
ð2Þ
p ¼

X1
m ¼ �1

zðmÞp �
D1FðmÞp

ioðm�bÞ

( )
eimoT0þ zð1Þp �D1Cð1Þp �D2ðApeibðoT0ÞÞ

n o
, (27)

where zðmÞp is the mth complex Fourier coefficient of Fð2Þp calculated by

zðmÞp ¼
1

2p

Z 2p

0
Fð2Þp ðx

ð0Þ
1 , . . . ,xð0Þ4 ,xð1Þ1 , . . . ,xð1Þ4 Þe

�imoT0 dðoT0Þ, (28)

For the solutions of Eq. (27) to be bounded, all the secular terms in Eq. (27) must be eliminated such that

zð1Þp �D1Cð1Þp �D2ðApeibðoT0ÞÞ ¼ 0, (29)

and the solutions of the resulting equation may take the form

xð2Þp ¼
X1

m ¼ �1,mab

zðmÞp

ioðm�bÞ
�

D1FðmÞp

fioðm�bÞg2

" #
eimoT0þCð2Þp eiboT0 , (30)

where Cð2Þp are arbitrary constants to be determined.
Similarly, by using Eqs. (20) and (26), introducing Eq. (30) into (18d), and eliminating the secular term, we obtain

Zð1Þp �D1Cð2Þp �D2Cð1Þp �D3ðApeibðoT0ÞÞ ¼ 0,p¼ 1 . . .4, (31)

where Zð1Þp are the 1st complex Fourier coefficients of Fð3Þp calculated by

Zð1Þp ¼
1

2p

Z 2p

0
Fð2Þp ðx

ð0Þ
1 , . . . ,xð0Þ4 ,xð1Þ1 , . . . ,xð1Þ4 ,xð2Þ1 , . . . ,xð2Þ4 Þe

�ioT0 dðoT0Þ: (32)

By substituting Eq. (21b) into Eqs. (24), (29), and (31), we obtain the modulation equations of a1, a2, y1, and y2 in
successive order. Since the secular terms are mutually complex conjugates for p=1,2 and 3,4, taking the equations only for
p=1,3 will yield

dan

dt
¼ eD1anþe2D2anþe3D3anþ � � � ,n¼ 1,2, (33a)

dyn

dt
¼ eD1ynþe2D2ynþe3D3ynþ � � � ,n¼ 1,2, (33b)

where

D1an ¼ Re½2Fð1Þn0 e�iyn �, (34a)

D2an ¼ Re½2ðzð1Þn0 �D1Cð1Þn Þe
�iyn �, (34b)

D3an ¼ Re½2ðZð1Þn0 �D1Cð2Þn �D2Cð1Þn Þe
�iyn �, (34c)

D1yn ¼
1

an
Im½2Fð1Þn0 e�iyn �, (34d)

D2yn ¼
1

an
Im½2ðzð1Þn0 �D1Cð1Þn Þe

�iyn �, (34e)
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D3yn ¼
1

an
Im½2ðZð1Þn0 �D1Cð2Þn �D2Cð1Þn Þe

�iyn �: (34f)

In Eqs. (34a)–(34f), Re [ ] and Im [ ] denote the real and imaginary parts of their arguments, respectively, and

n0 ¼
1 for n¼ 1,

3 for n¼ 2:

(
(35)

The solutions of the modal coordinates for the kth order asymptotic approximation can be obtained by keeping the
terms up to the (k–1)th power of e in Eq. (17) and kth power of e in Eqs. (33a) and (33b), respectively. Thus, the solutions
and the associated modulation equations for the kth asymptotic approximation can be represented by

xp ¼
Xk

j ¼ 1

ej�1xðj�1Þ
p , (36a)

dan

dt
¼
Xk

j ¼ 1

ejDjan, (36b)

dyn

dt
¼
Xk

j ¼ 1

ejDjyn: (36c)

It should be noted that in Eq. (36a), an appropriate order analysis in e enables us to adopt the asymptotic solutions
expanded up to the (k–1)th power of e instead of the kth power. For instance, consider the first approximation (k=1) of Eqs.
(36a)–(36c). If we let D1an and D1yn be the average values of D1an and D1yn in the interval (0, t), then from Eqs. (36b) and
(36c), we obtain

Dan ¼ anðtÞ�anð0Þ � etðD1an Þ, (37a)

Dyn ¼ ynðtÞ�ynð0Þ � etðD1yn Þ: (37b)

It can be seen that the time t, during which the quantities an and yn may acquire finite changes, is on the order of 1/e.
The first approximations of Eqs. (36b) and (36c) arise from neglecting the terms of order e2 and higher. An error of order e
in dan/dt and dyn/dt, until time t, leads to an error of order e2t in the functions an and yn. Hence, in the time interval during
which an and yn undergo finite changes, errors in these quantities are on the order of e. Thus, keeping the term exð1Þp ðan,ynÞ is
not necessary for the first approximation of Eq. (36a) because the error of using xp ¼ xð0Þp ðan,ynÞ is on the same order. By the
same token, such an order analysis may still hold for higher order asymptotic approximations (k41) of Eq. (36a).

5. The limit cycle and its stability determination

The direct application of Lyapunov’s indirect method to the original (weakly) nonlinear railway vehicle system through
linearization at its static equilibrium states is one of the most well-known processes used to identify the system stability in
the vicinity of the system’s static equilibrium states [1–6]. However, using only Lyapunov’s indirect method to determine
the stability of a complex nonlinear system, such as railway vehicles with state-dependent nonlinearities, could lead to
inaccurate results. For instance, two different initial states of a railway vehicle can result in periodic steady states that are
quite different; each one or both may be far from their static equilibrium states.

A limit cycle, which represents steady state periodic motion, exhibits a closed curve in a phase plane because of its
periodicity. In the case where all the adjacent paths approach the limit cycle as t-+N, the limit cycle is characterized as
stable or attractive, while in the case where all the adjacent paths approach the limit as t-�N, the limit cycle is described
as unstable or non-attractive. In all other cases it is neither stable nor unstable. A bifurcation diagram is a very useful way to
examine multiple steady state railway vehicle responses caused by nonlinearities. Such a diagram can be obtained by
evaluating the stability of a limit cycle through the variation of a parameter of interest (in this study, lateral displacement).

One of the most representative nonlinear analyses is bifurcation analysis [8], a procedure that is composed of two steps,
first finding all the solution branches in the region of interest and secondly determining the stability of all these branches.
To investigate the bifurcation characteristics of a full railway vehicle system, including the coupling effects of the two
bogies, a set of branches representing limit cycles are obtained. This is accomplished through the use of the asymptotic
approximation method and the method of multiple scales, in accordance with the vehicle’s running speed.

The nth order periodic functions of the principal modal coordinates xðnÞp (p=1,y,4) are functions of a1, a2, y1, y2, and
implicitly the time t. At a steady state, the amplitudes of oscillation (a1, a2) and the phase difference ŷð ¼ y1�y2Þ must be
time-independent and thus, constant. Therefore, to represent a limit cycle, the following equations must be simultaneously
satisfied:

da1

dt
ða1,a2,y1,y2Þ ¼ 0, (38a)
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da2

dt
ða1,a2,y1,y2Þ ¼ 0, (38b)

dŷ
dt
¼

d

dt
½y1ða1,a2,y1,y2Þ�y2ða1,a2,y1,y2Þ� ¼ 0: (38c)

From initial inspection, Eqs. (38a)–(38c) seem unsolvable because they contain four variables (a1, a2, y1, y2). However,
as mentioned earlier, the independent treatment of y1 and y2 in the steady state is not meaningful, but the difference
between the two is significant. After introducing the relationship y1 ¼ ŷþy2 into Eqs. (38a)–(38c) and setting a reference
value y2 for y2, we can obtain three coupled differential equations as functions of a1, a2 and ŷ. These equations are solvable
and may take the following form

_y1 ¼ eRe½2Fð1Þ1 e�iðy3þyÞ�þe2 Re½2ðzð1Þ1 �D1Cð1Þ1 Þe
�iðy3þyÞ�þ � � � ¼ 0, (39a)

_y2 ¼ eRe½2Fð1Þ3 e�iy �þe2 Re½2ðzð1Þ3 �D1Cð1Þ2 Þe
�iy �þ � � � ¼ 0, (39b)

_y3 ¼ e
1

y1
Im½2Fð1Þ1 e�iðy3þy2Þ��

1

y2
Im½2Fð1Þ3 e�iy2 �

� �
þe2 1

y1
Im½2ðzð1Þ1 �D1Cð1Þ1 Þe

�iðy3þy2Þ��
1

y2
Im½2ðzð1Þ3 �D1Cð1Þ2 Þe

�iy2 �

� �
þ � � � ¼ 0,

(39c)

where Fð1Þ1 , Fð1Þ3 , zð1Þ1 and zð1Þ3 are functions of y1, y2, and y3. The definition

fy1,y2,y3g ¼ fa1,a2,ŷg (40)

is employed for notation convenience.
The solutions of Eqs. (39a)–(39c) represent the steady state periodic responses of the system, i.e., the limit cycles. Once

these solutions are obtained, Lyapunov’s indirect method described in Appendix B can be applied to determine the stability
of the associated limit cycles. In the case where any of the eigenvalues of the linearized system matrix A0of Eq. (B.4) has a
positive real part, the limit cycle in the steady state is unstable; or else it is stable. The focus of this study is to examine the
behavioral characteristics of a full railway vehicle in every possible steady state condition. Hence, the application of
Lyapunov’s indirect method could be an effective way to determine ‘the stability of the limit cycles’ corresponding to the
respective steady state solutions.

6. Results and discussions

6.1. Dynamic simulation for attaining the asymptotic solutions at the hunting speed

Prior to performing any sophisticated bifurcation analysis on the full railway vehicle system, a series of numerical
simulations were done to support the validity of such approaches. For these simulations, the parameters listed in Appendix
C were used.

Principal modal coordinates and modulation equations for the first, second, and third approximations were numerically
evaluated through direct time integrations using the fourth-order Runge–Kutta method. The state-space responses of the
reduced railway vehicle system can be obtained by summing up the modal coordinates multiplied by their corresponding
modal vectors, and compared to results obtained from direct numerical integration.

Fig. 3 shows the frequency responses of the first three asymptotic approximations of the lateral displacement of the
leading wheelset in the front bogie with the linear and heuristic creep models. For notation brevity, the terminology
‘‘lateral displacement’’ will be used hereafter to represent the ‘‘lateral displacement of the leading wheelset in the front
bogie’’, unless mentioned otherwise. In the numerical simulation, the vehicle speed is set to be the hunting speed of the
linearized system, which is 377 km/h with the linear creep model and 376 km/h with the heuristic creep model.

As evident in Fig. 3, the response obtained using only the first-order approximation cannot explain the second or higher
order resonant frequency components. In contrast, the higher-order approximations can adequately explain such
components. Note that the lateral displacement of the railway vehicle is composed of higher resonant frequency
components and fundamental frequency components, which are at least 30 dB greater than the higher components and
hence dominates the lateral behavior of the vehicle. Although the accuracy of the response improves with the order of
approximation, this result show that the response obtained using the second-order approximation can be considered
sufficiently accurate to describe the hunting behavior of the vehicle. Thus, the modal coordinates are asymptotically
expanded up to the second-order in this study.

Fig. 4 shows the limit cycles of the lateral displacement represented in a phase plane with the linear and heuristic creep
models. Since the degree of nonlinearity from the heuristic creep model is larger than the one from the linear creep model,
the limit cycle of the former case tends to be more distorted from a perfect circle. However, it can be seen from these
figures that for both cases the phase portraits, when using the asymptotic expansion up to the second-order, are in good
agreement with those obtained using direct numerical integration.
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Fig. 3. Frequency responses of the lateral displacement of the leading wheelset in the front bogie with the linear creep model (first column) and the

heuristic creep model (second column): (a) the first, (b) the second, and (c) the third asymptotic approximations.
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Fig. 4. Phase portraits of the lateral motion of the vehicle model with: (a) the linear creep model and (b) the heuristic creep model.

Table 1
Comparison of the maximum lateral displacements for the first and second approximations.

Running speed (km/h) Maximum lateral displacement (m)

Numerical integration First approximation (%) Second approximation (%)

Cycle I 525.5 1.741�10�3 2.55�10�3 (46)a 1.784�10�3 (2.4)

Cycle II 1.06�10�2 1.062�10�2 (0.2) 1.039�10�2 (2.0)

Cycle I 550 2.07�10�3 –b 2.153�10�3 (4.0)

Cycle II 1.08�10�2 1.07�10�2 (0.5) 1.062�10�2 (0.9)

a Percent error of the maximum lateral displacement of the approximations with respect to that of the numerical simulation.
b Could not be obtained using the first approximation.
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Fig. 5. Phase portraits for the lateral displacement with three stable initial conditions (cases 1, 2, and 3 correspond to the stable points a, b, and c in

Fig. 10, respectively).
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Fig. 6. Phase portraits for the lateral displacement with three unstable initial conditions (cases 1, 2, and 3 correspond to the stable points d, e, and f in

Fig. 10, respectively).
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6.2. Effectiveness of the solutions for asymptotic approximation

To validate the effectiveness of the solutions obtained from asymptotic approximation, numerical simulations are
performed using Eq. (9). In these simulations, heuristic creep theory is applied using the parameters listed in Appendix C.
The values of damping constants Cpz, Csx, Csy, and Csz are enclosed in parentheses. Several limit cycles, used as initial states
in the simulations, and their corresponding stabilities are computed. The vehicle’s initial conditions (and running speed)
are set to correspond to three stable cases and three unstable cases.

The amplitudes of the stable limit cycles obtained from direct integration and those from the solutions of the first and
second approximations using the method of multiple scales are listed and compared in Table 1. Running speeds of 525.5
and 550 km/h were used for both methods. For the first approximation, the errors are very large (the maximum percent
error is about 46 percent) and some limit cycles are unattainable. For the second approximation, the errors are significantly
reduced (the maximum percent error is about 4 percent) and all the limit cycles are obtainable.

Fig. 5 shows the phase portraits obtained using the simulation results for the three stable (attractive) initial states
evaluated by the second-order approximation. In these figures, the symbol of a solid circle denotes the initial state and a
solid triangle represents the final state in the time interval of computation. In the case where the initial state is stable, the
simulation results show ellipses in the phase plane. It can be seen on Fig. 4(c) that the final trajectory is slightly diminished
in size when compared to the initial state.

Fig. 6 shows the phase portraits obtained using the simulation results for the three unstable (non-attractive) initial
states. As evident from these figures, the trajectory starting from the unstable limit cycle slowly diverges from the cycle
and converges to another attractive limit cycle. The stability results shown in Figs. 5 and 6 are in good agreement with the
stability from the corresponding initial states. Therefore, the second-order approximation can logically be used to perform
the bifurcation analysis on the full vehicle system considered in this study.
Fig. 7. Steady state solutions for the amplitudes of the modal coordinates and their phase difference.
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6.3. Bifurcation analysis

To investigate the bifurcation behavior of the vehicle system, the limit cycles in the vicinity of the linear critical speed
are obtained from the response by using the second-order asymptotic approximation and the method of multiple scales. As
a first step, the solutions of Eqs. (39a), (39b), and (39c) are computed numerically by using the multivariable Newton–
Raphson method [29] to obtain the limit cycle behaviors, i.e., the amplitudes of the modal coordinates and their phase
differences at the steady state. Since the focus of this study is to examine the hunting behavior of the railway vehicle
model, the bifurcation diagrams for the lateral displacement are obtained. Furthermore, in order to investigate the effects
of the hunting speed on the bifurcation behavior, two different set of values for the damping constants Cpz, Csx, Csy, and Csz

are used in the computation, specifically 15, 200, 30, 80 kNs/m for Case I and 450, 10, 10, 88 kNs/m for Case II. Other
parameters and their respective values are listed in Appendix C.

Fig. 7 shows the steady state amplitudes (a1, a2) of the associated modal coordinates and their phase difference (ŷ)
within a speed range of 250–750 km/h. Each diagram includes at least two branches, each composed of a stable (or
unstable) solution region that indicates a stable (or unstable) limit cycle, respectively. At least one stable region is also
included for each branch.

The branches obtained from the steady state amplitudes and their phase difference for the system with the heuristic
creep model [(c), (d) in Fig. 7] tend to vary widely and are more complicated than those attained with the linear creep
model. The heuristic creep model includes nonlinear saturation factors that play a role in confining, within certain physical
limits, the creep forces acting between the rail and the wheel contact interfaces. Also, the heuristic creep model tends to
produce creep forces that become more insensitive to variations in the states as the saturation factors approach their
limits. Thus, it is considered to be more realistic than the linear creep model. This may explain the variance in the behavior
of the branches when the heuristic creep model is employed.

Figs. 8 and 9 show the maximum lateral displacement as a function of the vehicle running speed based on the linear and
heuristic creep theories, respectively. System parameters for Case I are used. In Fig. 8, point A designates the equilibrium point
at the linear critical speed (E377 km/h) from which the branch becomes unstable; it is called the subcritical Hopf bifurcation. A
branch bifurcating from the equilibrium solution changes from unstable to stable at point B, which is called a fold or saddle-
node bifurcation because the solution changes the stability when it moves around the fold [7]. In nonlinear dynamics, a change
in the number of solutions will occasionally occur through such bifurcation(s) from an existing solution under a continuous
change in a parameter [7]. The running speed of the vehicle corresponding to this saddle-node bifurcation point is the nonlinear
B
C

D

A

Branch I

Branch II

Branch III

Fig. 8. Bifurcation diagram for the lateral displacement of the vehicle with the linear creep model.
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Fig. 9. Bifurcation diagram for the lateral displacement of the vehicle with the heuristic creep model.
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critical speed (E367 km/h), which should be given serious attention when designing railway vehicle systems. Note here that
the critical speed of this nonlinear system is smaller than that of the linearized system (i.e. the hunting speed).

One bifurcation branch, composed mainly of subcritical Hopf bifurcation and saddle-node bifurcation, is well-known
from previous research [19–21]. However, with a dual-bogie system, additional branches exist. These branches bifurcate
from a point different from the equilibrium point, from which Branch I in Fig. 8 bifurcates.

One of the branches (Branch II) includes two saddle node bifurcation points and is composed of many separate stable
and unstable regions. This branch changes from unstable to stable (or from stable to unstable) at points C and D. The other
branch (Branch III) is unstable. The existence of such additional branches means that, unlike a single-bogie vehicle system,
there are many stable or unstable coexisting solutions in a dual-bogie vehicle system. More specifically, the number of
coexisting limit cycles below the linear critical speed is eight (the maximum number), with three that are stable
(or attractive) limit cycles. From this observation, it can be inferred that the vehicle system has multiple stable limit cycles,
and each may give the states that stabilize the vehicle over a long period of time.

For the case where heuristic creep theory is applied, the bifurcation diagrams, similar to those of the linear creep model,
are composed of three branches: a bifurcation branch (Branch I) that includes the subcritical Hopf bifurcation (point A) and
the saddle-node bifurcation (point B), a bifurcation branch (Branch II) that includes two saddle-node bifurcations (points C
and D), and an unstable branch (Branch III). These are shown in Fig. 9. Although the linear critical speeds obtained using
linear and heuristic creep theories are quite similar (377 and 376 km/h, respectively), the critical speed obtained with the
nonlinear creep theory (E295 km/h) is much lower than the critical speed obtained with the linear creep theory
(E366 km/h). This is caused by the saturation of creep forces when the nonlinear creep theory is applied.

Fig. 10 shows the bifurcation diagrams for the lateral displacement when we used the system parameters for Case II.
Two and three branches are exhibited in these figures for the cases where, respectively, the linear and heuristic creep
theories are applied. Unlike the branches depicted in Figs. 8 and 9 for Case I, the branches for Case II exhibit a wider spread.

The shape of bifurcation branches seems to strongly depend on system parameters. The branches obtained using the
heuristic creep theory, shown in Fig. 10(b), are spatially more complicated than the branches obtained from the linear
creep theory. In addition, approximately twice as many branches are obtained using the heuristic creep model than are
obtained using the linear creep model.

The linear critical speeds obtained using the linear creep theory (Fig. 10(a)) and the heuristic creep theory (Fig. 10(b))
are 644 and 641 km/h, respectively, whereas their respective nonlinear critical speeds are 627 and 480 km/h. This trend is
similar to the one observed when the parameters for Case I are used.

Note that points a, b, and c in Fig. 10 correspond to the stable initial states of cases 1, 2, and 3 shown in Fig. 5,
respectively. Also, points d, e, and f correspond to the unstable states of cases 1, 2, and 3 shown in Fig. 6, respectively.
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Fig. 10. Bifurcation diagrams for the lateral displacement of the vehicle when using: (a) linear creep theory and (b) heuristic creep theory.
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Through a comparison of the results shown in Figs. 5, 6, and 10(b), it can be seen that the stability behavior in the
bifurcation diagrams are in good agreement with those obtained from numerical simulations.
7. Conclusions

A bifurcation analysis is performed to examine the nonlinear characteristics of a 31-DOF full railway system that
includes a lightly-coupled dual-bogie system. The reduced system equations of the 4 principal eigenmodes (two most
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dominant and their corresponding shadow) is adopted, assuming the contribution of the remaining modes is negligible. A
scaling parameter is introduced to emulate a system that oscillates with a monofrequency. The modulation equations for
the amplitudes and phase difference of the modal coordinates are obtained from these reduced equations through a series
of asymptotic approximations and the method of multiple scales.

Numerical simulations are performed to support the effectiveness of the bifurcation analysis. The limit cycles are
obtained from the modulation equations at steady state conditions and their stability is determined by Lyapunov’s indirect
method. These results are compared with those obtained from direct numerical integration. It is shown that at least a
second order approximation is needed to obtain reliable results for the vehicle system under consideration.

Using the linear and nonlinear creep theories, bifurcation diagrams are obtained for dual-bogie vehicle systems with
different parametric values. It is established that the nonlinear full vehicle system has more limit cycle branches than a
single-bogie vehicle system. One branch includes the sub-critical Hopf bifurcation and the saddle node bifurcation, while
the other branches include the saddle node bifurcation or show unstable behavior. These multiple limit cycle branches
indicate the presence of coexisting solutions at a fixed speed. The configuration and distribution of limit cycle branches
seem to strongly depend on system parameters. Using the nonlinear creep model, the difference between the nonlinear
and linear critical speeds for the vehicle system appeared to be larger than the difference obtained using the linear creep
model.
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Appendix A

A.1. Suspension forces and moments for the vehicle body

Fsyc ¼�2Ksyðyc�yt1Þ�2Csyð _yc� _yt1Þ�2Ksyððh�hG�h0Þfcþh0ft1Þ�2Csyððh�hG�h0Þ
_fcþh0

_ft1Þ

�2Ksyðyc�yt2Þ�2Csyð _yc� _yt2Þ�2Ksyððh�hG�h0Þfcþh0ft2Þ�2Csyððh�hG�h0Þ
_fcþh0

_ft2Þ, (A.1)

Fszc ¼�2Kszðzc�zt1Þ�2Cszð_zc�_zt1Þ�2Kszðzc�zt2Þ�2Cszð_zc�_zt2Þ, (A.2)

Msxc ¼ ðh�hG�h0Þð�2Ksyðyc�yt1Þ�2Csyð _yc� _yt1ÞÞ�2ððh�hG�h0Þfcþh0ft1Þ�2Csyððh�hG�h0Þ
_fcþh0

_ft1Þ�2Ksyðyc�yt2Þ

�2Csyð _yc� _yt2Þ�2Ksyððh�hG�h0Þfcþh0ft2Þ�2Csyððh�hG�h0Þ
_fcþh0

_ft2Þþbc3ð�2Kszbc3ðfc�ft1Þ�2Kszbc3ðfc�ft2ÞÞ

þbc4ð�2Cszbc4ð
_fc�

_ft1Þ�2Cszbc4ð
_fc�

_ft2ÞÞ, (A.3)

Msyc ¼ Lcð2Kszðzc�zt1Þ�4KszLcgcþ2Cszð_zc�_zt1Þ�4CszLc _gc�2Kszðzc�zt2Þ�2Cszð_zc�_zt2Þþðh�hG�h0Þð�2Ksxððh�hG�h0Þgcþh0gt1Þ

�2Csxððh�hG�h0Þ _gcþh0 _gt1Þ�2Ksxððh�hG�h0Þgcþh0gt2Þ�2Csxððh�hG�h0Þ _gcþh0 _gt2ÞÞ, (A.4)

Mszc ¼ bc1ð�2Ksxbc1ðcc�ct1Þ�2Ksxbc1ðcc�ct2ÞÞþ2bc2ð�2Csxbc2ð
_cc�

_ct1Þ�2Csxbc2ð
_cc�

_ct2ÞÞ

þLcð�2Ksxðyc�yt1Þ�2Csyð _yc� _yt1Þ�4KsyLccc�4CsyLc
_cc�2Ksyððh�hG�h0Þfcþh0ft1Þ�2Csyððh�hG�h0Þ

_fcþh0
_ft1Þ

þ2Ksyðyc�yt2Þþ2Csyð _yc� _yt2Þþ2Ksyððh�hG�h0Þfcþh0ft2Þþ2Csyððh�hG�h0Þ
_fcþh0

_ft2ÞÞ: (A.5)

A.2. Suspension forces and moments for the bogie frames

Fsyti ¼ 2Ksyðyc�ytiÞþ2Csyð _yc� _ytiÞ�2ð�1ÞiKsyLccc�2ð�1ÞiCsyLc
_ccþ2Ksyððh�hG�h0Þfcþh0ftiÞ

þ2Csyððh�hG�h0Þ
_fcþh0

_ftiÞ�2Kpyðyti�ywi1Þ�2KpyðLt1cti�Lw
_cwi1Þ�4CpyhG

_fti�2Kpyðyti�ywi2Þ

þ2KpyðLt1cti�Lwcwi2Þ�2Cpyð _yti� _ywi2Þþ2CpyðLt2
_ct2�Lw

_cwi2Þ, (A.6)

Fszti ¼ 2Kszðzc�ztiÞ�2ð�1ÞiKszLcgcþ2Cszð_zc�_ztiÞ�2ð�1ÞiCszLc _gc�2Kpzðzti�zwi1Þ�2Cpzð_zti�_zwi1Þ�2Kpzðzti�zwi2Þ�2Cpzð_zti�_zwi2Þ, (A.7)

Msxti ¼ 2b2
c3Kszðfc�ftiÞþ2b2

c4Cszð
_fc�

_ftiÞþh0ð�2Ksyðyc�ytiÞ�2Csyð _yc� _ytiÞÞ�2ð�1ÞiKsyLccc�2ð�1ÞiCsyLc
_cc�2Ksyððh�hG�h0Þfc

þh0fti�2Csyððh�hG�h0Þ
_fcþh0

_ftiÞÞþbt3ð�2Kpzbt3ðfti�fwi1Þ�2Kpzbt3ðfti�fwi2ÞÞþbt4ð�2Cpzbt4ð
_fti�

_fwi1Þ

�2Cpzbt4ð
_fti�

_fwi2ÞÞþhGð�2Kpyðyt1�ywi1Þ�2KpyðL1ctiþLwcwi1Þ�4KpyhGfti�2Cpyð _yti� _ywi1Þ�2CpyðLt2
_cti�Lw

_cwi1Þ

�4CpyhG
_fti�2Kpyðyti�ywi2Þþ2KpyðLtictiþLwcwi2Þ�2Cpyð _yti� _ywi2Þþ2CpyðLt2

_cti�Lw
_cwi2ÞÞ, (A.8)

Msyti ¼ h0ð�2Ksxððh�hG�h0Þgcþh0gtiÞ�2Csxððh�hG�h0Þ _gcþh0 _gtiÞÞþhGð�4KpxhGgti�4CpxhG _gtiÞþLGð2Kpxðzti�zwi1Þ�4KpzLGgti

þ2Cpzð_zti�_zwi1Þ�4CpzLG _gti�2Kpzðzti�zwi2Þ�2Cpzð_zti�_zwi2ÞÞ, (A.9)

Mszti ¼ 2b2
c1Ksxðcc�ctiÞþ2b2

c2Csxð
_cc�

_ct2Þþbt1ð�2Kpxbt1ðcti�cwi1Þ�2Kpxbt1ðcti�cwi2ÞÞ

þbt2ð�2Cpxbt2ð
_cti�

_cwi1Þ�2Cpxbt2ð
_cti�

_cwi2ÞÞþLt1ð�2Kpyðyti�ywi1Þ�2KpyðLt1cti
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þLwcwi1Þþ2Kpyðyti�ywi2Þ�2KpyðLt1ctiþLwcwi2ÞÞþLt2ð�2Cpyð _yti� _ywi1Þ�2CpyðLt2
_cti�Lw

_cwi1ÞÞ

þ2Cpyð _yti� _ywi2Þ�2CpyðLt2
_cti�Lw

_cwi2Þ: (A.10)

A.3. Suspension forces and moments for the wheelsets

Fswyij ¼�2Kpyywij�2Cpy _ywijþ2Kpyytiþ2Cpy _yti�2ð�1ÞjKpyLt1cti�2ð�1ÞjCpyLt2
_ctiþ2KpyhGftiþ2CpyhG

_fti, (A.11)

Fszwij ¼ 2Kpzztiþ2Cpz _zti�2Kpzzwij�2Cpz _zwij, (A.12)

Mszwij ¼ 2Kpxb2
t1cti�2Kpxb2

t1cwijþ2Cpxb2
t2
_cti�2Cpxb2

t2
_cwij, (A.13)

Msxij ¼�2Kpzb2
t1fwij�2Cpzb2

t2
_fwijþ2Kpzb2

t1ftiþ2Cpzb2
t2
_fti: (A.14)

A.4. Flange contact forces

Ftij ¼

Kryðywij�dÞ ywij4d,

0 �drywijrd,

KryðywijþdÞ ywijo�d,

8><
>: (A.15)

A.5. Linear creep forces and moments

FLxij ¼ F�Lxij�F�Lyijcwij, (A.16)

FLyij ¼ F�LxijcwijþF�Lyij, (A.17)

FLzij ¼ F�LyijðdLþfwijÞ, (A.18)

MLxij ¼M�LzijðdLþfwijÞcwij, (A.19)

MLzij ¼M�Lzij, (A.20)

FRxij ¼ F�Rxij�F�Ryijcwij, (A.21)

FRyij ¼ F�RxijcwijþF�Ryij, (A.22)

FRzij ¼�F�RyijðdR�fwijÞ, (A.23)

MRxij ¼�M�RzijðdR�fwijÞcwij, (A.24)

MRzij ¼M�Rzij, (A.25)

A.6. Creep forces and moments given by Kalker’s linear theory

F�Lxij ¼�
f33

V
V 1þ

a

Ry
�

rL

r0

� �
�a _cwij

� �
, (A.26)

F�Lyij ¼�
f11

V
ð _yjþrL

_fwij�VcwijÞ�
f12

V
_cwij�

V

Ry
�

V

r0
dL

� �
, (A.27)

M�Lzij ¼
f12

V
ð _ywijþrL

_fwij�VcwijÞ�
f22

V
_cwij�

V

Ry
�

V

r0
dL

� �
, (A.28)

F�Rxij ¼�
f33

V
V 1�

a

Ry
�

rR

r0

� �
þa _cwij

� �
, (A.29)

F�Ryij ¼�
f11

V
ð _ywijþrR

_fwij�VcwijÞ�
f12

V
_cwij�

V

Ry
þ

V

r0
dR

� �
, (A.30)
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M�Rzij ¼
f12

V
ð _ywijþrR

_fwij�VcwijÞ�
f22

V
_cwij�

V

Ry
þ

V

r0
dR

� �
: (A.31)

A.7. Saturation constants

aij ¼

1

bij

bij�
1

3
b2

ijþ
1

27
b3

ij

� �
for bijr3,

1

bij

for bijZ3,

8>>><
>>>:

(A.32)

bij ¼
bRijþbLij

2
andbpij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF�pxijÞ

2
þðF�pyijÞ

2
q
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNpyijÞ

2
þðNpzijÞ

2
q ,p¼ L,R, (A.33)

Npzij ¼�Krzðzwij�lywijþafwijÞ,p¼ L,R, (A.34)

Npyij ¼�Npzij tanðdpþfwijÞ ��NpzijðdpþfwijÞ,p¼ L,R: (A.35)

A.8. Components of contact position vector

RRxij ¼ acwij, (A.36)

RRyij ¼�aþrRfwij, (A.37)

RRzij ¼�afwij�rR, (A.38)

RLxij ¼�acwij, (A.39)

RLyij ¼ aþrLfwij, (A.40)

RLzij ¼ afwij�rL: (A.41)

Appendix B. Lyapunov’s indirect method

Differential equations (39a)–(39c) can be expressed in a more convenient vector form as

_yðtÞ ¼ F½yðtÞ�, (B.1)

where y(t) denotes a three-dimensional vector composed of y1, y2 and y3, and F[y(t)] is the corresponding three-
dimensional nonlinear vector function composed of the right-hand side of Eqs. (39a)–(39c). The solution of Eq. (B.1) can be
represented by the steady state solution ys superposed by the perturbed solution ~yðtÞ, i.e.,

yðtÞ ¼ ysþ ~yðtÞ: (B.2)

Substituting Eq. (B.2) into (B.1), expanding the right-hand side of the resulting equation in a Taylor series for ys, and
ignoring the higher order terms, the linearized equation of Eq. (B.1) can be obtained in the form

_~y ðtÞ ¼A0 ~yðtÞþf½ ~yðtÞ�, (B.3)

where f½ ~yðtÞ� is the nonlinear forcing term and

A0 ¼
qF

qy

	 

y ¼ ys

: (B.4)

The stability of the system in the steady state can be inferred from the eigensolutions obtained from the linearized system
matrix A0.

Appendix C. System parameters and their numerical values [5,18,20,21,26,30]
Parameters
 Values
Vehicle body, bogie frame, and wheelset masses (kg)
 mc=34,000, mt=3,000, mw=1,400
Roll, pitch, and yaw moments of inertia of the vehicle body (kg m2)
 Icx=75.06�103, Icy, Icz=2.086�106
Roll, pitch, and yaw moments of inertia of the bogie frame (kg m2)
 Itx=2,260, Ity=2,710, Itz=3,160
Roll, pitch, and yaw moments of inertia of the wheelset (kg m2)
 Iwx=915, Iwy=140, Iwz=915
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Primary longitudinal, lateral, and vertical stiffnesses (kN/m)
 Kpx=10,000, Kpy=5,000, Kpz=750
Secondary longitudinal, lateral, and vertical stiffnesses (kN/m)
 Ksx=150, Ksy=150, Ksz=400
Primary longitudinal, lateral, and vertical damping coefficients (kNs/m)
 Cpx=12, Cpy=12, Cpz=15 (450)
Secondary longitudinal, lateral, and vertical damping coefficients (kNs/m)
 Csx=200 (10), Csy=30 (10), Csz=80 (88)
Vertical and lateral rail stiffnesses (kN/m)
 Krz=62�106, Kry=16.17�106
Radius of the curved track (m)
 Ry=N
Cant angle (rad)
 fse=0.0873
Friction coefficient
 m=0.2
Acceleration due to gravity (m/s2)
 g=9.81
Wheel conicity
 l=0.05
Flange clearance (m)
 d=0.00923
Lateral creep coefficient (N)
 f11=10.2�106
Lateral/spin creep coefficient (N m2)
 f12=3120
Spin creep coefficient (N)
 f22=16
Longitudinal creep coefficient (N)
 f33=15�106
Half of the track gauge (m)
 a=0.7465
Wheel radius (m)
 r0=0.4575
Half of the secondary longitudinal and vertical spring arms (m)
 bc1, bc3=1.21
Half of the secondary longitudinal and vertical damper arms (m)
 bc2, bc4=1.21
Half of the primary longitudinal and vertical spring arms (m)
 bt1, bt3=0.978
Half of the primary longitudinal and vertical damper arms (m)
 bt2, bt4=0.978
Half of the primary lateral spring and damper arms (m)
 Lt1, Lt2=1.2
Distance between the vehicle body and the bogie frame mass centers (m)
 Lc=9
Height of the vehicle body mass center above the wheelset mass center (m)
 h=1.4
Height of the secondary suspension above the bogie frame mass center (m)
 h0=0.03
Height of the bogie mass center above the wheelset mass center (m)
 hG=0.44
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